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S U M M A R Y  
A procedure is developed for finding asymptotic expansions at high frequencies of the solutions of Helmholtz's 
equation subject to boundary conditions on certain guiding surfaces. This includes surface waves along surfaces of 
rather general shapes, and wave-guide modes in a class of non-uniform waveguides. Guided waves have some features 
of both eigenvalue (mode) and radiation problems. The method of this paper combines the two techniques, finding 
"modes" that propagate along rays in the general waveguide region and whose amplitudes vary along the paths of 
propagation. The phases of these modes are found from two coupled equations, one analogous to the eiconal equation 
of geometrical optics, and the other analogous to the eigenvalue or "transverse resonance" equation of waveguides. 
The amplitudes are asymptotic series in inverse powers of the wavenumber, and the coefficients satisfy a set of ordinary 
differential equations that can be solved recursively. It is found that the ray paths are not only functions of the re- 
fractive index (as in "pure" radiation problems), but depend also on the local geometrical properties of the guiding 
surface. 

1. Introduction 

We consider asymptotic solutions of the reduced wave equation 

IV2 +k2n2(X)] U(X)= 0, X~R (1) 

where k is a large parameter, n(X)eC t, and R is a region in a two- or three-dimensional 
Euclidean space. 

The nature of the solutions of(l) depends of course on the properties of R, and the boundary 
conditions to  be satisfied by U on 8R, the boundary surface of R. 

When R is the entire space or the exterior of a convex region, we have a radiation or diffrac- 
tion problem. A solution of (1) exists for all k. Asymptotic solutions for large k, based on the 
ray method, have been constructed for a broad class of such problems. Keller and Lewis [1] 
describe the technique and give a bibliography that summarizes the state of the art up to 1964. 
A book by the same authors [2] containing many more results, will be published soon. 

A ray solution is a local solution, i.e. it does not depend on the properties of R, 8R and n (X) 
everywhere in R u 8R, but only on n(X) along certain curves, the rays, which are the charac- 
teristics of an auxiliary equation to (1). The ray method is a powerful analytic approximation 
method. It can be applied to (1) when a rigorous solution (by separation of variables) cannot be 
found, and quite often it even leads more directly to a good approximate solution in cases that 
separation of variables is possible. 

There exists however a class of problems in which the number of rays that pass through every 
observation point is large, or even infinite. For example, if R is a convex or bounded region 
(a "cavity"), the rays are reflected at the boundaries, and all multiple reflections have to be taken 
into account. A modified ray method for the asymptotic solution of such problems has been 
developed by Keller and Rubinow [3]. It is applicable when the characteristic dimensions of 
R are large in comparison to the wavelength 2, where 

2 = 2rc/k. (2) 

Solutions exist only for certain values of k, the eigenvalues. The solution associated with an 
eigenvalue is an eigenfunction or a mode of R. Guided wave problems have some features of 
radiation problems and some features of eigenvalue problems. Both ray and mode techniques 
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have been applied in their solution. Usually, when the number of modes that can propagate in 
a structure is large, a ray approach may be preferable [4], [5]. When the number of propagating 
modes is small, as for example in wave guides whose cross-section dimensions are of the same 
order of magnitude as the wavelength, the ray method loses accuracy and the mode approach 
could be preferable. However, the modes are eigenfunctions of the structure. There is no 
rigorous way of finding the modes of a structure if it is non-uniform, i.e. when some separation 
of variables approach cannot be applied. 

In this paper we shall use a combination of mode and ray method to analyze a class of 
guided wave problems. This method has been used first by J. B. Keller [-6] for analyzing surface 
waves in water of variable depth. It consists of making an "Ansatz" for an asymptotic expansion 
of the solution of (1) and getting a recursive system of equations for the terms in the expansion, 
as is done in the ray method. The Ansatz takes into consideration the modal structure of the 
field. Thus, the asymptotic solution consists of a set of "modes" that propagate along two 
dimensional rays along a guiding surface. These modes resemble locally the modes in a uniform, 
guiding structure. The rays are determined by an "equivalent refractive index" that combines 
the real refractive index n and functions of the local shape of the guiding structure. The ampli- 
tude of each mode is assumed to be an asymptotic series in k-"  and it varies along the path of 
propagation. 

Many physical problems in acoustics, electromagnetism, elastodynamics [71, quantum 
mechanics etc., can be analysed by this method. We shall illustrate the method with the following 
examples : a) Scalar surface waves guided by a single surface, b) Scalar waves in a non-uniform 
three dimensional waveguide, c) Scalar waves in a two dimensional non-uniform, curved 
waveguide. In the appendix we summarize those assumptions and results of the ray method 
which are pertinent to our problem. 

2. Waves Guided by a Single Surface (Surface Waves) 

We shall look for solution of eq. (1), where 

v 2 =  21 x2 + + 2 (3) 
and R is defined by 

Y > H (x, z). (4) 

We shall assume that n does not depend on I1, i.e. n = n (x, z). The boundary of R is the given 
surface Y = H(x, z) where H is a nonnegative, bounded and differentiable function of x and z. 
U(X) satisfies the "impedance" boundary condition 

aU 
c~- + kZ U = 0 on Y = H (5a) 

where O/Ov stands for differentiation in the direction of the normal to H and Z=Z(x,  z) is a 
given, continuous function. Eq. (5a) can be rewritten as 

[Uy-VtH'VtU)+kZU[I+(VtH)2]~=O on Y = H  (5b) 

where Ur = OU/OY, Vt = (~/Ox, ~/Oz). 
We now introduce the following change of variables : 

k Y = y ;  kH=h;  U(x ,Y ,z )=u(x ,y ,z ) .  

Under this change of variables our problem becomes 

Lu=(VZ+kZO2/OyZ+kZne)u=O in y>__h,, 

k2[uy+ZDu]-Vth'Vtu=O on y = h ,  

where 

(6) 

(7) 

(8) 
D = D (x, z)= [1 + (VtH)2] ~. (When the slopes of H are gentle D_~ 1, and (8) is further 
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simplified). In addition to (7) and (8) the function u must tend to zero as y ~ o o  if it is a wave 
guided by the surface y = h, i.e. 

lim [u(x, y, z)[ = 0.  (9) 
y-*cO 

We may assume now without loss of generality that the solution u of the boundary value 
problem eqs. (7), (8) and (9) has the form 

u = A exp [ikcr + ])(y- h)] (10) 

where A = A (x, y, z); ])= ])(x, z); a = o-(x, z). We delete henceforth the subscript t from Vt and 
denote for shortness ])(y-h) = qS. Thus 

Vu = [ik Va A e4, + V (A e4,)] e ik~ 

V 2 u = [ - k 2 (Vo-) 2 A e4, + 2ik Va" V (A e r + ik V 2 o- (A e ~) + V 2 (Aer e ik~ 

~u/Oy =- uy = (Ay + A])) e4, + ik~ 

~2 U/@Z =_ Uyy = (Ayy + 2Ay]) + A]) 2) e 4,+ i~ .  

The boundary value problem becomes: 

Lu = e ik~ [k 2 { In 2 - (Va) 2 + 72] A e4, + e-  4, #/#y (At e24,)} + 

+ ik [2Vo" �9 V (A e r + V 2 (7 A e4,] + V 2 (A e4,)] = 0 (11) 

k 2 [Ay + (7 + ZD) A] - ikVa. V h A -  Vh. V(A e4,) = 0 at y = h.  (12) 

We assume now that A in (10) has the following asymptotic expansion: 

A(x, y, z ) ~  Ao(x, z)+ ~ Am(X, y, z)(ik) -m . (13) 
m = l  

We substitute this expansion in (11) and (12), and equate separately to zero the coefficients of 
each power of k. Equating to zero the coefficient of k 2 in (11) and (12) yields respectively 

(Vo_)2 = n2 + ])2 = N 2 (14) 

]) = - ZD (15) 

In order to satisfy condition (9), the function Z (which can be complex-valued) must have a 
positive real part. We recognize eq. (14) as the eiconal equation, where N = (n2+ Z 2 D2) ~ is 
an "equivalent refractive index" which combines the real refractive index n, the surface im- 
pedance Z and the geometric properties of the surface H. 

The solution of eq. (14)is standard [-1] (see appendix). The equations of the rays x=x(s) ,  
z=z(s)  are found from the ray equations 

d ( N  dx ) ~?N (16a) 

( d z )  ~N (16b) d N - 
Tss 0 z '  

where s is an arclength parameter along the ray. Now cr(x, z) is given by 

+ f s  a[x(s), z(s)-I = a(So) N(s')ds' (17) 
S0 

where the integration path runs along a ray. 
Next we equate to zero the coefficient of k 1 in (12), obtaining 

Aly = - V h .  VaA o on y = h.  (18) 
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The coefficient of k 1 in eq. (11) yields 

O/3y(A1, e 2r = [2Va "V(A o e r + V 2 aA o er e r = 

= (2Va'VA o + V 2 (TAo + Ao V(7" V)e 2r . (19) 

We can integrate eq. (19) from y=h to y =  c~. We use condition (9) and eq. (18) and get 

VA~ V 2 (20) -V(7"Vh=2V(7"~o-  ~ + (7+V(7"V(1/27). 

Eq. (20) is an ordinary differential equation along a ray. It can be shown (see eqs. (A.9) and (A. 11)) 
that 

d N d 
V(7" V --- N dss' 1V2 (7 = ds In (N6a) ~ . 

where 5a is the cross-section of an infinitesimal "tube of rays". Thus eq. (20) ca n be integrated, 
from some reference point s o to a point of observation s, yielding 

1 

A "s "[-N(s~176 ex [ 1 1 . (21) Ao(s)= J p 5[n(s)-n(so)]+�88 Z(so)-O(so) 

Eq. (21) gives the variation of Ao along a ray path. It is easily seen that for H = const, Z = const 
we get from (21) the well known relation of geometrical optics 

Ao (N ~Sa) ~ = constant along a ray. 

The "ray tube cross-section ratio" 6a(s)/~a(so) can be shown [1], [2], to be the Jacobian of 
the transformation from the xz coordinates to the new coordinate system of rays and wave- 
fronts. To sum up : if a is given on some initial manifold such as a point or a curve on the 
surface Y=H(x,  z), we can find the rays via eqs. (16a, 16b) and the function (7(x, z) via eq. (17). 
The rays comprise of a family of curves along the guiding surface. Once the rays are found, the 
variation of the expansion coefficient Ao(x, y) along a ray can be found via eq. (21). If A 0 is 
also given on some initial manifold the first term in the expansion of U can be found every- 
where. We can find, in principle, all the expansion coefficients A, (n = 1, 2, 3, ...) by equating 
to zero the coefficients of k -m (m = 0, 1, 2 . . . .  ) in eqs. (11) and (12), similar to the procedure we 
used above. The end result, collected from eqs. (6), (10), (14), (15), (17) and (21)is: 

U(x, Y, z) = exp { i k a - k ( Y - H ) Z [ 1  +(VtH)Z]�89 z)[1 + O ( k -  1)]}. (22) 

Appropriate variations of H and Z can have focusing effects on the two-dimensional rays, 
causing them to converge towards caustics or foci. As usual, this technique breaks down in the 
neighborhood of caustics and foci, where 6a--,0. Asymptotic expansions that are uniform in 
the vicinity of caustics [81 can be used to overcome such difficulties. 

If the surface Y = H or the impedance Z has curves along which they are discontinuous, there 
will occur reflection and transmission phenomena when a surface wave is incident upon such 
curves. Since we reduced the surface wave problem to a two-dimensional radiation problem, 
such reflection and transmission phenomena can be calculated. This however, requires some 
additional analysis which we are presently investigating. 

If the problem is two-dimensional, i.e. independent of the z variable, the guiding surface is 
Y = H (x). The ray path is the x-axis and the problem simplifies considerably [7]. 

3. Waves Guided Between Two Surfaces (Waveguide Modes) 

When the region R in eqs. (1) and (3) is given by 

H (x, z) > Y > - H  (x, z) 

with the boundary conditions 

(23a) 
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~U 
~W +- k Z U  = 0 on Y = +_H(x) (23b) 

we have a waveguide problem at hand. The assumptions on H and Z that  were made in the 
former section are made here as well. We shall use the change of variables (6) and obtain 

Lu = ( V { + k 2 O 2 / @ 2 + k 2 n 2 ) u  = 0 lyl< h (24) 

k 2 [u, +_ ZDu] -~ V, h. Vt u = O. y = +_ h (25) 

Solutions to the boundary  value problem posed by eqs. (24), (25) can be symmetrical or anti- 
symmetrical with respect to the plane y = 0. Thus we will assume (in analogy to eq. (10)) 

us = A cos 7Y eik~ (26a) 

u a = B sin 7Y eik~ (26b) 

Substituting (26a)into (24) and (25) and denoting q5 = yy, we get 

Lu = e ~k~ k 2 in 2 _ (Vo.)2 _ ~2] A cos ~b + - -  (A, cos a ~b) + 
cos q~ Oy 

+ ik [2VtT. V (A cos ~b) + V z t7 A cos q~] + V 2 (A cos ~b) [ = 0 (27) 

k 2 lAy cos q5 - yA sin q5 -t- Z D A  cos qS] -T- ik Va" Vh A cos q5 -T- 

-T- Vh" V(A cos ~b) = 0 at y = _+ h .  (28) 

We make now the same assumption as in eq. (13) and follow the same procedure. Equat ing 
to zero the coefficient of k 2 in eq. (27) yields 

(Vo_)2 = n 2 _ ~2 = N 2 (29) 

while from eq. (28) we get 

(Th) tan (Th) = D Z h .  (30) 

Eq. (30) is a t rancendental  equation for the determination of y : Since Z, D and h are given 
functions o f x  and z, we can determine from it the set of eigenvalues 7j=yj(x,  z) ( j=  1, 2, 3, ...). 
Once the eigenvalues are found, they are substituted back into eq. (29), yielding a "modal  
eiconal equation". The "equivalent refractive index" N is different for each mode. We can 
easily see that  N 2 is positive only for a finite set of eigenvalues y j ( j=  1, 2 . . . .  m). These are the 
propagat ing modes. All other modes will yield an imaginary a and correspond to evanescent 
modes. 

If we substitute (26b)in (27) and (28), we get in a similar way eq. (29), but eq. (30) will be 
replaced by 

(yh) cot (Th) = - DZh (31) 

for the antisymmetrical  modes. 
The solution of eq. (29) follows as usual, and yields the ray trajectories and the function 

o-.(x, z). This was described in the previous section. 
Y The equations for the determinat ion of the coefficients A m are obtained as before, by equating 

to zero the coefficients of k n (n = 1, 0, - 1, 2 . . . .  ). If we equate to zero the coefficient of k 1 in 
eqs. (28) and (27) we get: 

Aly = T- Ao V~r" Vh on y = + h (32) 

a/@ (A ly cos2 qS) = (2Va' VA o + V 2 o-A o + A o Vo-. V) cos 2 qS. (33) 

Since the solution us is assumed to be symmetrical,  we have 

A , ~ = 0  on y = 0  for n = 1 , 2 , 3  . . . . .  (34) 

We integrate eq. (33) from y = 0  to y = h  (or y =  - h ) ,  using eq. (34): 
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2A1, cos 27h = (2Vcr.VAo + V e aAo + AoVa "V)(h+�89 -1 sin 27h). (35) 

Using eq. (32) and rearranging we get 

cos 27h Va' VA o 1 Va- V (h + �89 sin 27h ) 
- V a ' V h  h+�89 ~ sin 27h - A ~  + �89 ~ T m ~ / ~  " (36) 

This is an ordinary differential equation for A0 along a ray. Its integration is immediate (see 
previous section, eqs. (20), (21)), and yields: 

sin 2k~ H ~ q ) ~ 
Ao(s)=Ao(so){N6a[H(1 + 2=-k7~ ) J ~ o  x 

I ) i l l  e s 1 
sin 2k~H -12 
- -  xp 

Nfa 1 + 2kTH ~ 1 + sin 2kTH/2kTH 1 + sin 2kyH/2k~H ~o 
(37a) 

Eq. (37a) gives the variation of Ao along a ray path. The field of a symmetrical mode has the 
form 

U (x, Y, z )=  exp (ika) cos (kTH)Ao (x, y)[1 + O (k-1)] .  (37b) 

As usual, our analysis fails near caustics i.e. where 6a---,0, and also near the cutoff of a mode 
(N--,0). The calculation of Bo (for the antisymmetrical modes) follows the same lines. Instead 
of eq. (34) we have the condition sin ~,y = 0 for y =  0. The higher order coefficients A,, B, 
(n= 1, 2, ...) are obtained recursively, by equating to zero the coefficients of k ~ k -1, ... in 
eqs. (27), (28). 

4. The  Duct  Waveguide 

Another example of guided waves which can be handled by the same technique is that of duct 
propagation. A duct will be, as before, the region R 1 defined by - H < Y < H, and the boundary 
OR1 are the surfaces Y =  _+ H(x, z). However, the boundary value problem to be solved will 
be now 

[V2+kZn2(X)] U1 = 0 -H(x ,  z)< Y< H(x, z) (38a) 

[V 2 + k = (X)] U= = 0 I YI > H(x, z) (38b) 

u1 = au2 Y = + H(x ,  z) (38c) 

~U1 _ b OU2 Y : +_H(x, z) (38d) 
~v 0v 

where a=a(x, z) and b=b(x, z) are given functions. 

An additional condition for being a duct is 

nl(X) > n2(X). VXeORI.  (39) 

The problem is brought via the change of variables (6) to the form 

[V2+kZ((?Z/~y 2 +n2)] ul = 0 - h <  y <  h (40) 

[V2+kZ(~Z/Oy2+n2)]u2 = 0 [Yl > h  (41) 

ul = auz y = + h  (42) 

(k2Uly-Vth 'V tu l )  = b(k2u2y-Vth 'Vtu2)  y =  +_h (43) 

There exist symmetrical and antisymmetrical solutions to that problem. For  the symmetrical 
solution we make the Ansatz 

u ]S) = A 1 cos 71Y eik~ (44a) 

u(2 ~) = Az exp [72 (h-T- y) + ika] . (44b) 
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For the antisymmetrical solution we make the Ansatz 

u] a) = B1 sin 71Y eik~, (45a) 

u~ ) = + B2 exp [72 (h-T- y) + ika], (45b) 

where the upper and lower signs apply for y ~ h  respectively. Substituting (44a, 44b)in  eqs. 
(40), (41) and equating to zero the coefficient of the highest power of k as before, yields 

(Vo_)2 2 2 2 2 (46) = n l - - y  l = n z - } - y  2 .  

From eqs. (42), (43) and (46) we get for the symmetrical solution 

(71 h) tan (71 h) = (b/a)72 h = b/a [h a (n~ - n~)-(y~ h)2] ~ (47) 

while for the antisymmetrical solution we get 

(71 h) cot (7~ h) = -(b/a)72 h = - b/a [h 2 (n~ - n ~ ) - ( ~  h)2] ~ . (48) 

Equations (46) and (47) or (48) are sufficient for the determination of 71, 72 and a for each mode. 
It is worth mentioning that eq. (47) yields a real ~ ~ in the range 0 __< 7 ~ < ( n2 - n2Z) ~ for any h__> 0. 
Thus, there exists a symmetrical mode that has no cutoff. We note that eqs. (47) and (48) 
correspond to eqs. (30) and (31), with ZD replaced by b/a [(n 2 - n 2) - 712] *. This implies that the 
effect of the spaces lYl > h on the solution ul in the region lyl < h is equivalent to a non constant 
surface impedance on y--  _+ h. This fact has already been observed in the analysis of diffraction 
at a curved interface between two media [9]. The coefficients A~, and B~ in eqs. (44) and (45) 
are assumed to have asymptotic expansions like A in eq. (13), and the calculation of the 
coefficients A1,, B1, (n=0, 1, 2 . . . .  ) proceeds as in the previous section (eqs. (32)through 
(37b)). The coefficients A2,, B2, of U2 (eq. (38b)) are obtained from the boundary condition 
eq. (38c). 

5. Other Guiding Structures 

We could regardthe "wave guides" of the two previous sections as "plane" wave guides in the 
following sense : the guiding surface Y = H was given in terms of its distance from the "ground 
plane" Y =0. Accordingly, the Ansatz we chose for the solution was of the form 

A(x, y, z)sin [7(x, z)y] exp [ika(x, z)] 
o r  

A (x, y, z) exp [7 (x, z ) (y-  h) + ika (x, z)] .  

The approximate solution is given in the geometrical terms H, D and dH/ds, which measure the 
distance of H and its inclination with respect to the "ground plane" u = 0. This is by no means 
the only possible way. We shall give an example in which the radius of curvature of H will 
appear in the approximate solution. In order to avoid unnecessary tedious calculations, we 
shall choose a two dimensional problem : surface waves guided by a cylindrical surface (given 
in polar coordinates (R, 0) by R=A+H(O), (A = constant) with an impedance boundary 
condition. The problem to be solved is 

1 ~ 1 0 2 
(V2+k2n2)U =! ~ + -~ ~-~ + R~ ~0 ~ + k2n 2) U = 0  O<R<A+H(O) (49) 

OU 
~ + kZU = 0 at R = A+H(O). (50) 

An additional condition is that U be regular at R = 0. Z and n may be functions of 0 (or of 
s=AO). 

We introduce the following change of variables 

0 = A O_ a O. U(R,O)=u(r,s). (51) kR=r;  kA=a;  kH=h;  ~ ~s - k  & '  
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Equations (49) and (50) become 

k 2 (0 2 u/63r 2 q- 1/r 63u/63r + n 2 u) + a2/r 2 632 u/63s 2 = 0 

k 2 (63u/63r -4- ZDu) - a2/r 2 ~u/63s" dh/ds = 0 

where 
D = [1 + ( A / R  dH/ds)2] �89 . 

We now make the Ansatz 

u (r, s) = S (r, s) J~ (nr) e ik~ . 

We denote 6 3 / & f ( s ) = f i = f ' ;  J , (n r )=J  and d/dx J~(x)=J.  Thus we obtain 

u s = [ika' BJ  + (BJ)~e ik~ 

Uss = [ -- k 2 a '2 BJ  + 2ika' (B J) + ika" BJ  + (BJ)"] e ika 

u r = (BrJ + BnJ) e ik~ 

u,.r = (B,.r J + 2nB,.J + Bn 2 J) e ik'~ . 

Substituting in eqs. (52) and (53) we get 

[k 2 {n 2 B (J + 1/nr J + (1 - ,~'2 a2/,~ ~ r ~) J + 1/J ~/63r (B~ J~) + 1/r B~ J} + 

(52) 
(53) 

(84) 

(55) 

+ ik [2a2/r 2 a' (BY)'+ a2/r z a" B J] + a2/r z (BJ)"] e 'k~ = 0 (56) 

[ k Z ( B n J + Z D B J + B r J )  - ika'h' aZ/r 2 B J - ( B J ) ' h '  aZ/r 2] e ik~ = 0 (57) 

We assume that B has the following asymptotic expansion: 

B(r, s) - Bo(s ) + ~ Bin(r, s ) ( ik)-" .  (58) 
m= 1 

We substitute (58) into (56) and (57) and equate to zero the coefficient of each power of k. The 
coefficient of k 2 yields 

J + 1/nr J + (1 - a '2 a2/n 2 r 2) J = 0 (59) 

n J + Z D J  = nJv(kn R ) + Z D J v ( k n  R ) =  0 at R = A + H .  (60) 

Equation (59) is an identity if we let 

O "t2 = vZ/a 2 (61a) 

which implies 

a(s) = a(So) v /kAds  . (61b) 
SO 

Eq. (61a) is the equivalent of the eiconal equation. We have an immediate solution to the 
eiconal equation, since in two dimensions the problem is trivial and the ray trajectories are the 
guiding circle R = A. The yet unknown function v(s) is determined from eq. (60), which is 
analogous to eqs. (30), (31), (47)and (48) of the previous sections. 

The determination of B o proceeds as in the previous sections : we equate to zero the coeffi- 
cients of k 1 in eqs. (56), (57) and obtain 

B l r =  - a 2 / r 2 a ' h ' B o  at r =  a + h  (62a) 

O/& (Blr j2) = a2/r2 (28' B'o + a" B o + a' B o d/ds) j2  . (62b) 

We can integrate eq. (62b) between r = 0  and r = a + h ,  noting that J~(z )~(z /2 )~ /F(v+l )  as 
z-+0. Thus we get from eqs. (628, 62b) a linear first order ordinary differential equation for Bo, 
which gives B o (s) in terms of known functions. Equating to zero the coefficients of k ~ k-  1 

etc. yields recursive ordinary differential equations for B 1, B2 . . . . .  B . . . . . .  in terms of Bo, B1, 
.... Bin- 1 . . . .  as before. 

Matkowsky [10] has considered some problems of"thin domains" (like our waveguide region) 
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in an even more general way : by assuming the guiding region to be symmetrical about some 
general arbitrary surface (rather than plane Y = 0 or the circle R = A) he found asymptotic 
expansions in some arbitrary non-symmetrical regions. Added in proof: we have succeded to 
generalize our method to non-symmetrical regions as well. This, and more results, will be 
published soon. 

6. Condu~on 

A systematic approach to the asymptotic solution of a class of linear partial differential 
equations in an unbounded space ("radiation" problems) has been to assume a solution of the 
form [1]: 

U(X) ~ exp [ika(X)] ~, Am(X)(ik) -m 
m = O  

where k is a large parameter that appears in the equations and (possibly) the boundary condi- 
tions. Substitution of this assumed solution in the equation and the boundary conditions yields 
a first order partial differential equation for a (the eiconal equation), and a recursive system of 
ordinary differential equations for Am(m = 0, 1, 2...) along the rays, which are the characteristic 
curves of the eiconal equation. 

We have shown that it is possible to reduce some problems of "guided waves", which are 
eigenvalue problems, to radiation problems in a space that has one dimension less than the 
original bounded space. This is achieved by assuming a solution of the form 

u(X) ~ exp [ika(X)]f[?(X)] ~ Am(X)(ik) -m (63) 
m = 0  

wherefis chosen in accordance with the geometry of the problem (an exponential, trigonometric 
or cylinder function in our examples). A certain additional restriction is imposed on the asymp- 
totic expansion as well (see eqs. (13) and (58)). Substituting (65) in the equations and the 
boundary conditions yields a system of equations for o(X) and ?(X) (for e~ample : eqs. (14) and 
(15), eqs. (29) and (30) or eqs. (60) and (61a)). Simultaneous solution of these equations yields 
the spectrum of the problem and determines the ray trajectories for each mode (if there are 
more than one). In addition, we get again recursive systems of ordinary differential equations 
for the expansion coefficients A,, along the rays. 

The method devised here could be useful in analysing a variety of non-homogeneous wave- 
guide problems, such as the propagation of elastic disturbances in the layers of the earth, 
propagation of electromagnetic signals in the ionosphere or in the "earth-ionosphere wave- 
guide", propagation of under water sound etc. 

Problems of scattering and reflection from discontinuities or obstacles in uniform wave- 
guides have been analysed in terms of the modes of the unperturbed structure. Since we have 
shown how to calculate the "slowly varying modes" of some non-uniform structures, it seems 
quite possible that approximate solutions of corresponding scattering and reflection problems 
in those non-uniform structures can be found in a similar way. 

Our method is of course subject to the same restrictions as the above mentioned method 
for unbounded spaces. We may assume however, that more sophisticated methods (such as 
the "uniform asymptotic" method [8], [9], [11] can be similarly extended to waveguide 
problems, and may overcome some of the shortcomings of our method. 

After completion of this work the author was made aware by Professor J. B. Keller that 
some similar results have been derived independently in a somewhat different way by Professor 
Keller and his co-workers in [2] (chapters X and XI) and in [10]. However, the approach and 
the scope of this paper seem sufficiently different to justify its separate publication. 

The author wishes to express his gratitude to Professor Keller for his interest and useful 
comments. 
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Appendix 

We shall summarize briefly the assumptions and results of the ray theory as needed for this 
paper. Our summary follows reference [-1]. A short summary of this method is also given in [8]. 

Consider a function u(x), (x=(xl ,  x2, x3)) that satisfies the equation 

V2 u + kZ nZ (x)u = O (A.1) 

in an unbounded space (subject to a radiation condition). 
We assume 

u(x) = A(x,  k)e ik~(x) (A.2) 

where A has the asymptotic expansion 

A(x ,  k) ~ ~ Am(x)(ik) -= . (A.3) 
= = 0  

Substituting (A.2) and (A.3) into (A.1) and equating separately to zero the coefficients of each 
power of k, yields first of all the eiconal equation, 

(Vo)  2 = n  2 

and the following recursive system for A=, 

2Va' VAo + A0 V 2 a = V "(A 2 VS) /A  o = 0 

2 V 6 " V A ~ + A = V 2 f f  = -V2Am_l r e= l ,  2 . . . .  

(A.4) 

(A.5) 

(A.6) 

It can be shown that the rays, (or the characteristics) of eq. (A.4), which are perpendicular to 
the wavefronts a = const, are solutions of the ordinary differential equations 

n d s  n ds / = ~ \ 2 J '  ( j=  1,2, 3) (A.7) 

where s is an arclength parameter along the curves x=x( s ) .  The phase function a becomes 

s 

a(s )=  a(So) + { n[x(s ' ) ]ds ' .  (A.8) 
J 

80 

The vector Vo- is tangent to the ray, and IVo- I = n. Thus 

dx 
go---- n - -  

ds 

3 dxi g _ d 
V6"V = n i= ~1 ds 8x i n ds " (A.9) 

Applying Gauss' theorem to eq. (A.5) over the volume of an infinitesimal "tube of rays" 
that extends from So to s, yields 

(A~ nSa)s = (A 2 naa)s o (A.10) 

where 6a is the normal cross-section of the tube. 
Applying Gauss' theorem to V2a over such a tube of rays, and letting s---,So, yields 

VZa _ d ln(nSa). (A.11) 
n ds 
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